Prior Exposure to Neurotrophins Blocks Inhibition of Axonal Regeneration by MAG and Myelin via a cAMP-Dependent Mechanism
نویسندگان
چکیده
MAG is a potent inhibitor of axonal regeneration. Here, inhibition by MAG, and myelin in general, is blocked if neurons are exposed to neurotrophins before encountering the inhibitor; priming cerebellar neurons with BDNF or GDNF, but not NGF, or priming DRG neurons with any of these neurotrophins blocks inhibition by MAG/myelin. Dibutyryl cAMP also overcomes inhibition by MAG/myelin, and cAMP is elevated by neurotrophins. A PKA inhibitor present during priming abrogates the block of inhibition. Finally, if neurons are exposed to MAG/myelin and neurotrophins simultaneously, but with the Gi protein inhibitor, inhibition is blocked. We suggest that priming neurons with particular neurotrophins elevates cAMP and activates PKA, which blocks subsequent inhibition of regeneration and that priming is required because MAG/myelin activates a Gi protein, which blocks increases in cAMP. This is important for encouraging axons to regrow in vivo.
منابع مشابه
Soluble adenylyl cyclase is necessary and sufficient to overcome the block of axonal growth by myelin-associated factors.
Neurons in the CNS do not regenerate following injury; regeneration is blocked by inhibitory proteins in myelin, such as myelin-associated glycoprotein (MAG). Elevating neuronal levels of the second messenger cAMP overcomes this blocked axonal outgrowth. One way to elevate cAMP is pretreating neurons with neurotrophins, such as brain-derived neurotrophic factor (BDNF). However, pleiotropic effe...
متن کاملNeurotrophins elevate cAMP to reach a threshold required to overcome inhibition by MAG through extracellular signal-regulated kinase-dependent inhibition of phosphodiesterase.
Inhibitors of regeneration in myelin, such as myelin-associated glycoprotein (MAG), play an important role in preventing regeneration after CNS injury. Elevation of cAMP, either with dibutyryl-cAMP (db-cAMP) or by priming with a variety of neurotrophins, overcomes inhibition by MAG and myelin. However, activation of cAMP is not generally regarded as a signaling pathway for neurotrophins. Here w...
متن کاملArginase I and Polyamines Act Downstream from Cyclic AMP in Overcoming Inhibition of Axonal Growth MAG and Myelin In Vitro
Elevation of cAMP can overcome myelin inhibitors to encourage regeneration of the CNS. We show that a consequence of elevated cAMP is the synthesis of polyamines, resulting from an up-regulation of Arginase I, a key enzyme in their synthesis. Inhibiting polyamine synthesis blocks the cAMP effect on regeneration. Either over-expression of Arginase I or exogenous polyamines can overcome inhibitio...
متن کاملNeuronal cyclic AMP controls the developmental loss in ability of axons to regenerate.
Unlike neonatal axons, mammalian adult axons do not regenerate after injury. Likewise, myelin, a major factor in preventing regeneration in the adult, inhibits regeneration from older but not younger neurons. Identification of the molecular events responsible for this developmental loss of regenerative capacity is believed key to devising strategies to encourage regeneration in adults after inj...
متن کاملLooking downstream: the role of cyclic AMP-regulated genes in axonal regeneration
Elevation of intracellular cyclic AMP (cAMP) levels has proven to be one of the most effective means of overcoming inhibition of axonal regeneration by myelin-associated inhibitors such as myelin-associated glycoprotein (MAG), Nogo, and oligodendrocyte myelin glycoprotein. Pharmacological manipulation of cAMP through the administration of dibutyryl cAMP or rolipram leads to enhanced axonal grow...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 22 شماره
صفحات -
تاریخ انتشار 1999